Keller–Osserman a priori estimates and the Harnack inequality for quasilinear elliptic and parabolic equations with absorption term

dc.contributor.authorShan, M.A.
dc.contributor.authorSkrypnik, I.I.
dc.date.accessioned2020-11-19T10:11:03Z
dc.date.available2020-11-19T10:11:03Z
dc.date.issued2017
dc.description.abstractIn this article we study quasilinear equations model of which are Despite of the lack of comparison principle, we prove a priori estimates of Keller–Osserman type. Particularly under some natural assumptions on the function f, for nonnegative solutions of p-Laplace equation with absorption term we prove an estimate of the form with constant c independent of u, using this estimate we give a simple proof of the Harnack inequality. We prove a similar result for the evolution p-Laplace equation with absorptionen_US
dc.identifier.urihttps://r.donnu.edu.ua/handle/123456789/1182
dc.language.isoenen_US
dc.subjectLarge solutionsen_US
dc.subjectA priori estimatesen_US
dc.subjectQuasilinear elliptic and parabolic equationsen_US
dc.subjectHarnack inequalityen_US
dc.titleKeller–Osserman a priori estimates and the Harnack inequality for quasilinear elliptic and parabolic equations with absorption termen_US
dc.typeBook chapteren_US
Файли
Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Shan2.pdf
Розмір:
765.03 KB
Формат:
Adobe Portable Document Format
Опис:
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис: