Keller–Osserman a priori estimates and the Harnack inequality for quasilinear elliptic and parabolic equations with absorption term
Ескіз недоступний
Файли
Дата
2017
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
In this article we study quasilinear equations model of which are
Despite of the lack of comparison principle, we prove a priori estimates of
Keller–Osserman type. Particularly under some natural assumptions on the function
f, for nonnegative solutions of p-Laplace equation with absorption term we prove
an estimate of the form with constant c independent of u, using this estimate we give a simple proof of the
Harnack inequality. We prove a similar result for the evolution p-Laplace equation
with absorption
Опис
Ключові слова
Large solutions, A priori estimates, Quasilinear elliptic and parabolic equations, Harnack inequality